

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATIO	N: Bachelor of Science in Ap	plied Mathematics Honours
QUALIFICATIO	N CODE: 08BSHM	LEVEL: 8
COURSE CODE: FAN802S		COURSE NAME: FUNCTIONAL ANALYSIS
SESSION:	JANUARY 2023	PAPER: THEORY
DURATION:	3H00	MARKS: 100

SECOND OPPORTUNITY/SUPPLEMENTARY QUESTION PAPER		
EXAMINER	Dr S.N. NEOSSI NGUETCHUE	
MODERATOR:	Prof F. MASSAMBA	

INSTRUCTIONS

- 1. Answer ALL the questions in the booklet provided.
- 2. Show clearly all the steps used in proofs and obtaining results.
- **3.** All written work must be done in blue or black ink and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 2 PAGES (Including this front page)

Attachments

None

Problem 1: [45 Marks]

1-1. Let
$$f: \mathbb{R} \to \mathbb{R}$$
 such that $x \mapsto \begin{cases} 0, & \text{if } x \in \mathbb{Q}, \\ 1, & \text{if } x \notin \mathbb{Q}. \end{cases}$ Show that f is Borel-measurable. [10] (Hint: for any $a \in \mathbb{R}$, consider $E = \{x \in \mathbb{R}: f(x) < a\}$ and show that $f^{-1}(E) \in \mathcal{B}(\mathbb{R})$)

1-2. Let
$$(X, \mathcal{F})$$
 be a measurable space. Prove that if $A_n \in \mathcal{F}, n \in \mathbb{N}$, then $\bigcap_{n=1}^{\infty} A_n \in \mathcal{F}$. [5]

1-3. Let Ω be a non-empty set and $\mathcal{F}_{\alpha} \subset \mathcal{P}(\Omega), \alpha \in I$ an arbitrary collection of σ -algebras on Ω . State [4+6=10]the definition of a σ -algebra and prove that

$$\mathcal{F} := \bigcap_{\alpha \in I} \mathcal{F}_{\alpha}$$
 is a σ -algebra.

1-4. Let (X, A, μ) be a measure space.

(i) What does it mean that (X, A, μ) be a measure space?

(ii) Show that for any $A, B \in \mathcal{A}$, we have the equality: $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$. [7] (Hint: Consider two cases: (i) $\mu(A) = \infty$ or $\mu(B) = \infty$; (ii) $\mu(A), \mu(B) < \infty$ and then express $A, B, A \cup B$ in terms of $A \setminus B$, $B \setminus A$, $A \cap B$ where necessary.)

[3]

[6]

[7]

1-5. Show that the following Dirichlet function is Lebesgue integrable but not Riemann integrable [10]

$$\chi := \mathbb{1}_{\mathbb{Q} \cap [0,1]} \colon [0,1] \to \mathbb{R}$$

$$x \mapsto \begin{cases} 1, & \text{if } x \in \mathbb{Q} \\ 0, & \text{if } x \notin \mathbb{Q} \end{cases}$$

Problem 2: [20 Marks]

2-1. Define what is a compact set in a topological space.

[3] **2-2.** Show that (0,1] is not a compact set for usual topology of \mathbb{R} . [9]

2-3. Let E be a Hausdorff topological space and $\{a_n\}_{n\in\mathbb{N}}$ a sequence of elements of E converging to a. Show that $K = \{a_n | n \in \mathbb{N}\} \cup \{n\}$ is compact in E. [8]

Problem 3: [35 Marks]

3-1. Use the convexity of $x \mapsto e^x$ to prove the Arithmetic-Geometric Mean inequality: [5]

$$\forall x, y > 0$$
, and $0 < \lambda < 1$, we have: $x^{\lambda}y^{1-\lambda} \le \lambda x + (1-\lambda)y$.

3-2. Use the inequality in question 2-1. to prove Young's inequality:

$$\alpha\beta \leq \frac{\alpha^p}{p} + \frac{\beta^q}{q}, \; \forall \alpha, \beta > 0, \text{ where } p,q \in (1,\infty) \colon \frac{1}{p} + \frac{1}{q} = 1.$$

3-3. Use the result in question **3-2.** to prove Hölder's inequality:

$$\sum_{i=1}^{n} |x_i y_i| \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} \left(\sum_{i=1}^{n} |y_i|^q\right)^{1/q}, \forall \mathbf{x} = (x_i), \mathbf{y} = (y_i) \in \mathbb{R}^n, \ p, q \text{ as above }.$$

3-4. Consider $(X, \|\cdot\|_{\infty,1})$, where $X = C^1[0,1]$ and $\|f\|_{\infty,1} = \sup_{x \in [0,1]} |f(x)| + \sup_{x \in [0,1]} |f'(x)|$ and also consider

 $(\mathbf{Y}, \|\cdot\|_{\infty})$, where $\mathbf{Y} = \mathcal{C}[0, 1]$.

3-4-1. Show that
$$T = \frac{d}{dx} : X \to Y$$
 is a bounded linear operator. [7]

3-4-2. Show that $T = \frac{d}{dx}$: $D(T) \subsetneq Y \to Y$ is an unbounded linear operator, where $D(T) = \mathcal{C}^1[0,1]$. [10] (Hint: use $u_n(x) = \sin(n\pi x)$).